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Abstract

1 A quaternion-based attitude control system is
developed for the X-33 in the ascent ight phase. A
non-linear control law commands body-axis rotation
rates that align the angular velocity vector with an
Euler-axis de�ning the axis of rotation that takes the
body-axis system into a desired-axis system. The
magnitude of the commanded body rates are deter-
mined by the magnitude of the rotation error. The
commanded body rates form the input to a dynamic
inversion-based adaptive/recon�gurable control law.
The indirect adaptive control portion uses on-line
system identi�cation to estimate the current control
e�ectiveness matrix to update a control allocation
module. The control allocation runs in a null-space
injection mode that excites and decorrelates the ef-
fectors without degrading the vehicle response in or-
der to enable on-line system identi�cation. A direct
adaptive control scheme uses the output of a neural
network to compensate for dynamic inversion error.
The overall system is designed to provide fault and
damage tolerance for the X-33 on ascent. Prelimi-
nary results are shown to demonstrate the feasibility
of the approach.

Introduction

Adaptive/recon�gurable ight control technolo-
gies have been maturing over the past decade. A
number of di�erent approaches have been developed
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and some have been tested on �ghter-type aircraft.
An indirect adaptive control approach1 was demon-
strated on the VISTA-F-16 in 1995 where a simu-
lated failure of a left horizontal tail was induced on
approach and the vehicle landed without incident.
More recently, the X-36 tailless remotely piloted
vehicle successfully demonstrated a direct adaptive
control system where a neural network was used to
adaptively regulate the inversion error of a base-
line dynamic inversion control law.2 The Air Force
RESTORE program developed a number of direct
and indirect adaptive control algorithms for tail-
less �ghter aircraft.3{6 In general, indirect adap-
tive control systems require on-line identi�cation of
the model parameters that are used for the on-line
computation of a control law. Direct adaptive con-
trol schemes do not require explicit identi�cation of
model parameters, instead they are used to augment
a certainty-equivalent control system.

Transitioning adaptive control technology to
Reusable Launch Vehicles (RLVs) like the X-33 has
the potential of providing bene�ts demonstrated on
�ghter aircraft to this new class of vehicle. Bene-
�ts include improved reliability through fault and
damage tolerance to e�ector failures, and faster
turnaround times through reduced ight control re-
design times. The current X-33 control system is
essentially a gain-scheduled PID architecture.7 The
system is recon�gurable in that it is designed to
accommodate a prede�ned set of failures such as
engine-out, again using gain-scheduling. Adaptive-
recon�gurable control is di�erent in that the sys-
tem adapts to failures (possibly unforeseen) on-line
in real time. Direct adaptive ight control meth-
ods that are used to augment a dynamic inversion
baseline control system are very promising and are
being transitioned to the Boeing UCAV. This pa-
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per will discuss a hybrid direct/indirect adaptive
control system that is built around a baseline dy-
namic inversion control law. The primary function
of the direct adaptive portion of the controller will
be to compensate for errors or uncertainties in the
base engine-aerodynamics or the non-control e�ec-
tor portion of the vehicle model. Dynamic inversion
control laws require the use of a control e�ector al-
location algorithm when the number of control ef-
fectors exceeds the number of controlled variables.
The control allocation relies on accurate knowledge
of the control derivatives. Under failure or dam-
age conditions the control derivatives can be altered
dramatically. By identifying control derivatives and
supplying updated information to the control allo-
cation block, the performance of the entire system
can be improved. Thus the entire control scheme
proposed here has elements of direct and indirect
adaptive control. The control system described in
this paper is implemented in C and interfaced with
the Marshall Aerospace Vehicle Representation in C
(MAVERIC)8 simulation of the X-33

Baseline Attitude Control System

During the ascent ight phase, the X-33 control
system must track attitude commands generated by
the guidance system. The use of a dynamic inversion
control law to control the Euler angles of this vehicle
on ascent is precluded because of the requirement
to compute the Euler angle rates. The pitch atti-
tude of the vehicle changes by more than 90 degrees
throughout this ight phase which brings the well-
known singularity problems inherent in the compu-
tation of Euler angle rates into play. To circumvent
this problem, a quaternion-based control law is de-
veloped and coupled with a dynamic inversion-based
body-axis rate command system. The system works
by determining the axis of rotation that will take
the vehicle's body-axis system into a desired axis
system. A set of body-axis rate commands are then
generated that are aligned with a body-to-desired
Euler or eigen-axis. The magnitude of the com-
manded rates are a function of the magnitude of the
scalar angular misalignment � between the body and
desired axis systems.
In general we de�ne a quaternion as having scalar

and vector parts:

~q = q0 + q = q0 +
�
q1 q2 q3

�
(1)

with a constraint on the unit norm:

q20 + q21 + q22 + q23 = 1 (2)

A body-to-desired quaternion ~qb2d holds informa-
tion about the direction of the Euler axis in its vector
part qb2d and information about the angular mis-
alignment of the two axis systems in its scalar part
q0b2d . The scalar and vector parts of the body-to-
desired quaternion are given by:

q0b2d = cos(�=2)

qb2d =

2
4C1 sin(�=2)
C2 sin(�=2)
C3 sin(�=2)

3
5 (3)

where C1; C2; C3 are the direction cosines of the Eu-
ler axis relative to the body-axis reference frame.
The guidance system generates attitude com-

mands referenced with respect to a plumbline-axis
system. Two quaternions are used to compute
the body-to-desired quaternion, the plumbline-to-
desired quaternion ~qp2d and the plumbline-to-body
quaternion ~qp2b . The body-to-desired quaternion
as de�ned above can be calculated using quaternion
multiplication and inversion rules.9

~qb2d = ~q�1p2b~qp2d (4)

The vector part of ~qb2d yields the direction of the
Euler-axis in body-axis coordinates. Quaternion
multiplication and inversion is a more computation-
ally tractable approach that can be used to deter-
mine the Euler-axis and magnitude of the align-
ment error when compared to direction cosine matri-
ces since the on-line computation of eigenvalues and
eigenvectors and the associated sign ambiguities are
side-stepped.
Figure 1 shows a conceptual block diagram of a

baseline ascent attitude control system currently un-
der development. The design is motivated by the
fact that if at any instant, the body-axis angular
velocity vector is aligned with the body-to-desired
Euler-axis, the body-axis system will move toward
the desired-axis system thereby reducing the magni-
tude of the attitude error. When the attitude error
� is zero, q0b2d = 1 and qb2d =

�
0 0 0

�
as can be

deduced from Equation 3.

Dynamic Inversion

The quaternion-based outer-loop control system
generates body-axis angular velocity commands
pc; qc; rc that are aligned with the error Euler-axis.
The inner-loop dynamic inversion control law is de-
signed so that the X-33 tracks these body rate com-
mands. The X-33 rotational dynamics can be writ-
ten as:
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Figure 1: Conceptual Block Diagram of Quaternion-based Attitude Control System for Ascent

_! = f(!;P) + g(P; Æ) (5)

where ! =
�
p q r

�
and P denotes measurable

or estimable quantities that inuence the body rate
states. The parameter P includes variables such as
Mach number, angle of attack, sideslip angle and
vehicle mass properties such as moments of inertia.
Equation 5 expresses the body-axis rotational accel-
erations as a sum that includes control dependent
accelerations g(P; Æ) and accelerations that are due
only to the base engine and aerodynamics. It is as-
sumed that the mass properties of the X-33 change
slowly when compared to the body-axis rates so that
_I � 0 and

_! = I�1(GB � ! � I!) (6)

where

GB = GBAE(!;P) +GÆ(P; Æ) =

2
4LM
N

3
5
BAE

+

2
4LM
N

3
5
Æ

(7)

where GBAE(!;P) is the moment generated by the
base engine-aerodynamic system and GÆ is the sum
of the moments produced by the control e�ectors.
Thus

f(!;P) = I�1(GBAE(!;P)�! � I!) (8)

and

f(P; Æ) = I�1GÆ(P; Æ) (9)

Dynamic inversion requires that the control de-
pendent portion of the model be aÆne in the con-
trols. We therefore develop a linear approximation
of the control dependent part such that:

GÆ(P; Æ) �GÆ(P)Æ (10)

The X-33 aerodynamic database provides force
and moment coeÆcient data that is taken at a mo-
ment reference point (MRP) which is located at
the center of gravity of the empty vehicle (i.e. no
fuel/oxidizer). Control derivative information was
extracted from the tables in the database for Mach
numbers, angles of attack and sideslip angles that
were to be encountered on the ascent trajectory.
Polynomial �ts to the discrete control derivative
data were produced to provide continuous estimates
of GÆ(P). The control derivatives are continuously
corrected for the moving center of gravity as the ve-
hicle ascends using the following relation:

GÆ(P) = GÆMRP + (rMRP � rcg)�FÆMRP (11)

The X-33 power pack is a XRS 2200 linear
aerospike rocket engine. This engine is divided into
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four quadrants: port upper A1, port lower A2, star-
board upper B1 and starboard lower B2. These
quadrants can be di�erentially throttled to generate
moments that can be used for attitude control. This
di�erential throttling is critical at launch since the
aerodynamic surfaces are ine�ective at low dynamic
pressure. The engine control derivatives are esti-
mated by using a global slope approximation that
simply divides the estimated torque produced by a
quadrant by the actual chamber pressure in that
quadrant. For example, the torque gradient of the
upper port quadrant A1 would be estimated by:

@GA1

@PcA1
�
GA1

PcA1
(12)

The engine control derivatives are also cor-
rected for the moving CG. The engine torques
GA1;GA2;GB1;GB2 are estimated by feeding
chamber pressure commands through a transfer
function model of the engine with limits to estimate
the actual chamber pressures. The engine forces and
moments are then calculated using a table lookup
model parameterized by chamber pressure, mixture
ratio and pressure ratio.
The model used for the design of the dynamic in-

version control law becomes:

_! = f(!;P) +GÆ(P)Æ (13)

and our objective is to �nd a control law that pro-
vides direct control over _! so that _! = _!des, i.e.

_!des = f(!;P) +GÆ(P)Æ (14)

therefore, the inverse control must satisfy:

_!des � f(!;P) =GÆ(P)Æ (15)

Since there are more control e�ectors than con-
trolled variables, a control allocation algorithm must
be used to obtain a unique solution. Control alloca-
tion will be discussed in detail in the next section.
There are twelve control e�ectors that may be used
on ascent: inboard and outboard elevons, left and
right rudders, body aps, and chamber pressures of
the four quadrants of the aerospike engine. Equa-
tion 15 states that the control e�ectors are to be
used to correct for the di�erence between the de-
sired accelerations and the accelerations due only to
the base engine and aerodynamic moments.
When the loop is closed around the aircraft as

shown in Figure 2 and suÆcient control power ex-
ists such that Equation 15 is satis�ed, the transfer

function matrix should approach a bank of decou-
pled integrators.

2
4pq
r

3
5 �

2
4
1
s

0 0
0 1

s
0

0 0 1
s

3
5
2
4 _pdes
_qdes
_rdes

3
5 (16)

The higher the �delity of the model used in the
dynamic inversion control law, the more the closed-
loop system will behave like a decoupled bank of
integrators.
A command shaping pre�lter is used to con-

vert commands from the outer-loop attitude con-
troller pc; qc; rc into acceleration commands to the
dynamic inversion control law _pdes; _qdes; _rdes. The
pre�lter structure is designed to provide a �rst-
order low-pass �lter response for each command vari-
able CV (p; q; r) to desired command variable signal
,CV CMD , (pc; qc; rc). The combination of pre�lter
and dynamic inversion produce an implicit model
following framework. Figure 3 shows a block dia-
gram of the pre�lter that is used for each axis.
The gain Kb can be interpreted as the crossover

frequency of the loop transfer function. Achieving
the desired closed loop dynamics is critically de-
pendent on the dynamic inversion/control allocation
algorithm successfully producing a decoupled bank
of integrators. If dynamic inversion is perfect the
closed-loop transfer function for each command vari-
able becomes:

CV

CV CMD
=

1
2
KB

s+ 1
2
KB

(17)

The gain KB must be selected to provide suf-
�ciently high bandwidth tracking without over-
driving the control e�ectors.
In summary the fundamental objective of the

dynamic inversion control law is to provide good
body angular rate tracking. The dynamic inversion
and model-following architectures will be augmented
with direct and indirect adaptive control algorithms
to mitigate the impact of uncertainties and compen-
sate for damage and failures.

Control Allocation

There are three controlled variables on the ascent
trajectory and twelve control e�ectors; therefore, a
control allocation scheme must be used to ensure
that Equation 15 is satis�ed. The control alloca-
tion scheme used in this case draws heavily on the
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Figure 2: Block diagram of inner-loop dynamic inversion control law
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Figure 3: Implicit model following implentation using pre�lter and dynamic inversion

work of BuÆngton et.al.4, 10 The control allocation
problems are formulated as linear programs. The
LP approach minimizes a linear performance index
subject to linear constraints. Numerous codes ex-
ist to solve such problems. The LP Solve11 package
written in the C programming language was used in
this case to be compatible with the X-33 MAVERIC
simulation. Linear inequality constraints are used to
ensure that e�ector rate and position limits are not
violated. More complex engine constraints are also
accommodated to ensure that feasible thrust vec-
toring commands are generated. The control alloca-
tion problem is broken down into a control de�ciency
branch and a control suÆciency branch.

Control De�ciency Branch

The control de�ciency branch is used to test feasi-
bility of satisfying Equation 15. For convenience we
will refer to the left-hand side of ( 15) as ddes.

ddes
M

= _!des � f(!;P) =GÆ(P)Æ
M

= BÆ (18)

If it is not feasible to obtain ddes = BÆ due to con-
trol e�ector constraints, then the di�erence between
the desired and actual e�ector-induced body-axis ac-
celerations is minimized. Thus the objective can be

summarized in terms of minimizing a 1-norm perfor-
mance index subject to constraints:

min
Æ

JD = kBÆ � ddesk1

subject to:

Æ � Æ � Æ

(19)

where Æ and Æ are the most restrictive lower bounds
and upper bounds on the control e�ector deection.

Æ = min(Æu;�T _Ær + Æ)

Æ = max(Æl;��T _Ær + Æ)
(20)

where Æu is the upper position limit vector, Æl is the
lower position limit vector, _Ær is a vector of e�ec-
tor rate limits and �T is the inner-loop ight con-
trol system update rate. The optimization problem
posed in Equation 19 may be transformed into the
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following linear programming problem:

min
Æ

= JD =
�
0 � � � 0 1 � � � 1

� � Æ
Æs

�

subject to:2
66664

�Æs
Æ

�Æ
BÆ � Æs

�BÆ � Æs

3
77775 �

2
66664

0

Æ

�Æ
ddes
�ddes

3
77775

(21)

where Æs which is the same dimension as the set
of controlled variables. If JD = 0 then the com-
manded controlled variable rates are achievable and
there may be excess control power available that can
be used to optimize sub-objectives. If J 6= 0, the
commanded controlled variable rates are not achiev-
able and the control allocation algorithm provides a
vector of e�ector commands that minimize the de�-
ciency.

Control SuÆciency Branch

If there is suÆcient control power available such
that JD = 0, then there may be excess control
power available to optimize a sub-objective. The
sub-objective could involve driving the control e�ec-
tors to a preferred position Æp. A performance index
reecting this objective is given by:

min
Æ

JS = kWÆ(Æ � Æp)jj1

subject to:

BÆ = ddes

Æ � Æ � Æ

(22)

where WÆ is a vector that allows one to weight one
preference over another. This optimization problem
can be cast into the LP framework as follows:

min
Æ

= JS =WT
Æ Æs

subject to:2
66664

�Æs
Æ

�Æ
Æ � Æs

�Æ � Æs

3
77775 �

2
66664

0

Æ

�Æ
Æp

�Æp

3
77775

BÆ = ddes

(23)

where Æ, Æs,Æp and WÆ are of the same dimension
as the number of control e�ectors. The preference
vector Æp is used in this case to decorrelate the con-
trol e�ectors to enable on-line system identi�cation
of the control e�ectiveness matrix B.

Null Space Injection

The indirect adaptive portion of the control law
requires on-line identi�cation of the control e�ec-
tiveness matrix B. This enables the control law to
compensate for failures, damage or modeling errors
throughout the ight. In order to identify elements
of the control e�ectiveness matrix, each control ef-
fector must be active at all times. Furthermore, each
e�ector must be moving independently so that there
is no correlation between the movement of one con-
trol e�ector and another. Decorrelated control de-
ections are necessary to obtain a well conditioned
regressor matrix for system identi�cation. One way
of doing this is to provide dithered e�ector com-
mands that consist of an additive random signal
that is superimposed on the nominal e�ector com-
mand. Unfortunately this simple approach results
in degradations vehicle response since in general
B(Æ + Ædither) 6= ddes. The solution is to provide
a dithering signal that lies in the null space of the
B, i.e. BÆdither = 0 so that B(Æ + Ædither) = ddes.
This can be accomplished indirectly by randomly
perturbing the control e�ector preference vector ac-
cording to:

Æp
M

=W�1BT(BW�1BT)�1ddes (24)

where

W = ~WWr

Wr = diag(10v1 ;10v2 � � �10vm)
(25)

and v is a vector of uniformly distributed random
variables between -1 and 1. The matrix ~W is a nom-
inal diagonal weighting matrix used for scaling pur-
poses to equally distribute commands. Note that Æp
is actually the solution to a weighted least squares
problem:

min
Æ

J = Æ
TWÆ

subject to:

BÆ = ddes

(26)

Thus the preference vector will be driven toward a
randomly weighted least squares solution to the con-
trol allocation problem that does not account for
rate and position constraints. Now the preference
vector Æp is randomly changing and the suÆciency
branch of the LP-based control allocation ensures
that BÆ = ddes and that the control e�ector con-
straints are not violated. This approach ensures
that the control e�ectors are decorrelated and ac-
tive without degrading the vehicle response. This

6
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approach also avoids the explicit calculation of the
null space of B.

Baseline Dynamic Inversion Results

The baseline attitude control system shown in Fig-
ures 1, 2 and 3 was implemented in the MAVERIC
simulation of the X-33. The roll, pitch and yaw
bandwidths were set to Kb = 5 while the attitude
error proportional and integral gains were set to
Kp = 1 and Ki = 0 respectively. Null-space injec-
tion control allocation was implemented using LP
techniques and was used to excite and decorrelate
the control e�ectors without degrading the vehicle
response. The commanded and actual Euler angles
for the ascent trajectory are shown in Figure 4. One
can see that the X-33 tracks the commanded atti-
tude quite well. The stepped nature of the com-
manded attitude is a result of the slower (1 Hz) up-
date rate of the guidance system when compared to
the inner-loop ight control system (50 Hz).

The performance of the dynamic inversion control
law can be more fairly evaluated by comparing the
body rate commands to the actual body rates. Fig-
ure 5 makes this comparison. The actual body rates
ideally should look like those of the model or low pass
�ltered command signals according to Equation 17.
It can be seen that the actual roll and yaw rates fol-
low the commands very closely indicating that the
inversion is nearly perfect in these two axes. Small
short term di�erences appear when comparing com-
manded pitch response to the actual response which
indicates that some pitch-axis modeling information
is inaccurate.The di�erences are slight however, and
do not signi�cantly impact the attitude tracking per-
formance as can be seen in Figure 4. The appear-
ance of high frequency noise in the pitch response
is caused by the modeling error in the control ef-
fectiveness matrix and null-space injection. Integra-
tion of of an on-line system identi�cation algorithm
will reduce the modeling error and allow the con-
trol allocation to adapt to control e�ector failures or
damage.

The baseline control law operates quite well over
the entire ascent trajectory which covers a very wide
range of ight conditions. The vehicle is launched
vertically and accelerates to approximately Mach 9.5
at 180,000 ft. The vehicle center of gravity moves
approximately 4 meters as the mass of the vehicle
changes from 285,000 lbm to 79,000 lbm in about
3 minutes. Note that this control law does not use
gain scheduling and does not require linear models
of the vehicle over the ight envelope for synthe-

sis. The control law simply requires access to the
nonlinear vehicle model parameters and estimates
of the vehicle states as the ight progresses. New
vehicle con�gurations can be own without chang-
ing the control system architecture or generating a
new gain schedule. Only the new apriori estimates of
the model parameters must be loaded into the ight
control law.

On-Line System Identi�cation

In the event of failures in the control surfaces, a
static approach to on-line system identi�cation pro-
posed by Chandler et al.5, 10 is used to estimate the
vehicle's changing control derivatives. The newly
updated control derivatives are then used by the
dynamic inversion control law to track the atti-
tude guidance commands. The static identi�cation
approach provides a direct, non-iterative solution.
Prior information about the system such as the apri-
ori knowledge of the e�ectiveness of the control sur-
faces can be included in the identi�cation algorithm
in the form of stochastic constraints for better esti-
mates of these values. The control derivatives esti-
mates can also be improved by lengthening the data
window.
In this paper, a control surface failure occurs when
the X-33's entire right ap Æ1 is lost at time equals 20
seconds, rendering its control derivative zero. The
static identi�cation method is used to estimate the
roll control derivatives _pÆ1 , ..., _pÆ12 of the X-33's
twelve control e�ectors Æ1, ..., Æ12.
The modeled roll acceleration equation of motion in
the stability axis is:

_p = _p�� + _prr + _ppp+ _ppqpq + _pÆ1Æ1 + � � �

+ _pÆ12Æ12 + wp + higher order terms
(27)

The rolling acceleration coeÆcients due to side-slip
�, yaw rate r, roll rate p, and pitch rate p are _p� ,
_pr, _pp, and _pq respectively. The roll acceleration co-
eÆcients due to the twelve control e�ectors Æ1, ...,
Æ12 are _pÆ1 , ..., _pÆ12 respectively. The measurement
noise is represented by wp.
To estimate the new control derivatives, we �rst re-
move contributions of the side-slip, pitch rate, roll
rate, yaw rate, and the higher order terms from (27):

_~p = _p� [ _p�� + _prr + _ppp+ _ppqpq +

higher order terms] = _pÆ1Æ1 + � � �+ _pÆ12Æ12
(28)

Concatenating k sampled measurements in equation
(28), we have a data window of length k. Setting
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Figure 4: Attitude tracking using dynamic inversion/null-space injection control allocation

n = 12, the number of control e�ectors, we have:

2
64
_~p1
...
_~pk

3
75

| {z }
Z

=

2
64
Æ11 Æ21 � � � Æn1
...

...
...

...
Æ1k Æ2k � � � Ænk

3
75

| {z }
H

2
64
_pÆ1
...
_pÆn

3
75

| {z }
�

+

2
64
wp1
...

wpk

3
75

| {z }
W

(29)

Compactly, equation (29) can be written as

Z = H�+W

where Z denotes a k � 1 vector of measured roll
accelerations due to the control e�ectors. H is a
k � n regressor matrix of measured control surface
deections. The n�1 vector � is the rolling moment
coeÆcients to be estimated. The W represents the
system sensor noise. The n � 1 vector W is the
stochastic process of zero mean with the covariance
R(�) = r(�)Ik . The minimum-variance estimate5

�̂mv of � is then

�̂mv = (HTR�1H)�1HTR�1Z

The standard of deviation of the estimate �̂ is then:

�̂ =

q
( ~ZT ~Z)=(k � n)

where ~Z = Z � H�̂ is the return di�erence. The
corresponding covariance Pmv of the estimate ^�mv

is

Pmv = �̂2(HTH)�1

Apriori knowledge of parameters to be estimated,
such as the values of rolling moments of the un-
failed aircraft obtained from experimental tests, can
be used at this point to obtain a mixed estimate
of the minimum-variance estimate and apriori val-
ues. The apriori values �aprior with its associated
covariance Q becomes the stochastic constraint on
the �nal mixed estimate �̂me and its covariance:

�̂me = �̂mv + Pmv(Pmv +Q)�1(�apriori � �̂mv)

Pme = [I � Pmv(Pmv +Q)]Pmv

In calculating the mixed estimate �̂me, the k � n
moving data window H is updated by replacing the
earliest values of the control surface deections with
their latest values. The same is done for the k � 1
vector Z of the roll accelerations. Finally, the mixed
estimate results �̂me are low-pass �ltered (1st order
with 15 rad/sec bandwidth) to smooth out the �nal
results.
In the example below, we apply the above identi�-

cation method to estimate the control derivatives of
the X-33 's twelve control e�ectors with a complete
loss of the right ap Æ1 at 20 seconds. The covariance
of the e�ectors' apriori rolling accelerations are cho-
sen to be r(Æ1) = 0:01, and r(Æ1) = � � � = r(Æ12) =
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Figure 5: Body-rate tracking using dynamic inversion/null-space injection control allocation

0:0001. Figure 4 shows the nominal performance of
the vehicle under no failure. With the loss of the
right ap and without the on-line system identi�-
cation the controller fails to adapt to the changing
rolling moments, thus it is unable to track the guid-
ance commands as seen in Figure 6. Under failure
and with on-line system identi�cation one can see
that the controller is able to track the guidance com-
mands. The value of the mixed estimate of the right
ap rolling control derivative is shown in Figure 7.
It is observed that rapid variation of the right ap's
control derivative estimate is caused by the change
in the slope of the roll command. The sensitivity
of the right ap's estimate to the roll command can
be reduced by choosing a slower �lter. Furthermore,
at lower dynamic pressure the aero control e�ectors
Æ1 � � � Æ8 are less e�ective. This occurs for time > 150
seconds. The rolling accelerations produced by the
aero-e�ectors are thus small in equation (28) while
the engine di�erential throttle e�ectors Æ9 � � � Æ12 are
large. This di�erence in the e�ectiveness among the
vehicle's e�ectors cause wide uctuations in the es-
timates of the aero-e�ectors' control derivative.

Direct Adaptive Control

Direct adaptive controllers do not require explicit
identi�cation of vehicle parameters. Instead they
make use of adaptation laws that update the internal
parameters in their structure and usually augment

certainty equivalent control laws such as dynamic
inversion. Neural network-based adaptive control
schemes have been developed by Calise12 and Schu-
macher.6 The adaptive control architecture devel-
oped by Schumacher is used in this case since it is
compatible with the baseline dynamic inversion con-
trol law described in this paper. The output of the
neural network is a weighted sum of basis functions
that is added to the input to the control allocation
block. This adaptation signal uad is designed to can-
cel errors in the dynamic inversion process that arise
from modeling errors. The nonlinear basis functions
are formed by combining a number of di�erent pa-
rameters pi that are known to signi�cantly inu-
ence the vehicle forces and moments. In this case
we choose a basic family of parameters and their
squares, i.e.

�
1 p1 p21 p2 p22 � � �

�
. We then form

a polynomial and cube it

(1 + p1 + p21 + p2 + p22 + � � � )3 (30)

After expansion we remove all terms with powers
greater than 2 and change all non-unity coeÆcients
to one. Each basis function Gj is multiplied by a
weight Wj that is calculated by the weight update
law:

_Wj = �

��
1

2KI

y +
1 +KI

2KpKI

_y

�
+ �T

�
jyj j _yj

�T
Wj

�
(31)
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Figure 6: Attitude tracking performance with lost right ap.

where  is the learning rate and � is similar to the
\e-modi�cation" factor that limits the growth rate
of the weights. The terms KI and Kp are related

to the gain Kb in Figure 3 as follows: KI =
K2

b

4
,

Kp = Kb. The term _y is the command variable er-
ror CVmodel�CV , where CVmodel is the output of a
command �lter that is an explicit model of the de-
sired overall response. The weight update law was
derived from a Lyapunov stability analysis and en-
sures that the time derivative of the Lyapunov func-
tion is negative de�nite, a necessary condition for
stability. Figure 8 shows how the direct adaptive
scheme �ts with the baseline dynamic inversion con-
trol law. The adaptation signal for each controlled
variable is obtained as follows:

uad =WTG (32)

whereW is a vector of the weights andG is the vec-
tor of basis functions for the axis of interest. At the
present time the basic families of parameters com-
prising the basis functions for each controlled vari-

able are given by:

Roll/Yaw � � �

2
664

1 � �2 � �2

M M2 p p2 r
r2 �q �q2 �(pÆ) �(pÆ)

2

�(rÆ) �(rÆ)
2

3
775

Pitch � � �

2
4 1 � �2 � �2

M M2 q q2 �q
�q2 �(qÆ) �(qÆ)

2

3
5

(33)

where �q is normalized dynamic pressure and the
squashing functions are de�ned as

�(u)
M

=
2

1 + e�0:1u
� 1 (34)

and has an output between -1 and 1. The remaining
parameters are normalized by the magnitude of their
expected maximum values.
The neural network adaptive control laws were in-

tegrated into the MAVERIC simulation and tested
with learning rates of  = 20 and � =

�
:01 :01

�
.

Test cases were produced by breaking the additive
inverse f(!; P ) loop so that no knowledge of the base
engine-aerodynamics was provided to the controller.
Only desired dynamics, neural network and the con-
trol allocation module were left intact. In such a
situation, one would expect the output of the neu-
ral network to attempt to reconstruct the missing
acceleration due to the base engine-aerodynamics.
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Figure 7: Apriori and mixed estimates of left and right ap roll control derivative (lost right ap, ID turned
on at 20 sec)

Figure 9 compares the output of the neural net-
work to the truth model of the base-engine aerody-
namics. One can see that the two curves are quite
similar which indicates that the neural network is
compensating for the broken feedback loop in the
roll-axis. Unfortunately, shortly before main engine
cuto� (160 sec), the output of the neural network
diverges and stability is lost. Similar behavior was
observed for the yaw-axis network. This is particu-
larly troublesome since the baseline dynamic inver-
sion control law is capable of retaining good perfor-
mance even with the additive inverse loops broken.
The present conjecture is that the learning rate must
also be made adaptive since the oscillatory diver-
gence indicates that the learning rate is too high in
some portions of the ight envelope. Richer sets of
basis functions may also solve the problem and both
approaches are currently under consideration.

Hybrid Adaptive Control Architecture

A block diagram of the hybrid direct/indirect
adaptive control architecture for each controlled
variable is shown in Figure 10. Direct and indirect
adaptive components are simply modules that aug-
ment the baseline dynamic inversion/control alloca-
tion control law.

The on-line system identi�cation module provides
mixed estimates of the i'th row of the the control

e�ectiveness matrix Bi from measured or estimated
command variable rates due to the control e�ectors
_CV Æm and the control e�ector commands. The cur-

rent estimate of the B matrix is used to update the
control allocation. Recall that the control allocation
is running in null-space injection mode to decorrelate
and excite the e�ectors to enable on-line system ID
without degrading the command variable response.

Each controlled variable uses a linear-in-
parameters neural network that is primarily used to
compensate for modeling error in the non-control
e�ector portion of the X-33 moment equations. The
neural networks can compensate for some control
e�ector modeling errors as well.

On-line system ID forms the indirect adaptive
component of the architecture, while the neural net-
works form the direct adaptive portion of the control
law. The components of the control law have been
through limited individual testing in the MAVERIC
simulation. NASA Marshall Space Flight Center will
be evaluating the control law later this fall.

Conclusions

A control architecture for the X-33 has been pre-
sented to demonstrate the feasibility of applying
adaptive/recon�gurable control technologies devel-
oped for �ghter aircraft to reusable launch vehicles.
A baseline dynamic inversion control law with null-

11
American Institute of Aeronautics and Astronautics



AIAA 00-4156

pi

CV

�

CV

y

CVBAE

uad

�

+

�

CV

+CVmodel _y

1
s

Neural Network

Allocation
To Control

Explicit
Model

Pre�lter

u = CVÆ

Figure 8: Integration of Neural Controller into the Dynamic Inversion Baseline

space injection control allocation demonstrated good
attitude tracking capability over the entire ascent
trajectory. This baseline control architecture is well
suited for the insertion of direct and indirect adap-
tive control elements to improve the fault tolerance
of these high speed ight vehicles. Dynamic inver-
sion allows designers to easily modify the control law
when vehicle con�gurations change or when more
accurate aerodynamic data becomes available. The
designer simply updates the model parameters (ta-
bles, curve-�ts, etc.) and the control law synthesis is
complete. Stability and robustness analyses should
still be performed; however, a completed redesign of
a traditional gain-scheduled control law is not neces-
sary. The on-line system identi�cation module has
been integrated into the simulation and has been
tested on a limited basis. The direct adaptive neu-
ral networks are integrated into the baseline system;
however, good performance was only achieved for
a limited portion of the ascent trajectory and sta-
bility was ultimately lost near main engine cuto�.
The causes of the instability are under investigation.
Nevertheless, the indirect adaptive portion of the
control law has performed well in the limited tests
that have been performed and greatly enhances the
fault tolerance of the overall control law.
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